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Elastic and quasi-elastic light scattering data are given for moderately concentrated solutions of a polystyrene 
(Mw = 8.6 x l0 s) in cyclohexane at the Flory theta temperature. The concentrations studied gave [r/]c from 
0.6 to 8.3, with [~/] = 76 cm3g-1. A maximum in the scattered intensity versus scattering angle is discussed 
in terms of a net repulsion among chain centres obtaining at the Flory theta temperature. A 
double-exponential decay observed in the quasi-elastic light scattering behaviour is discussed in terms of 
a model involving relaxation effects giving rise to a q-independent exponential component, and one that 
depends on q2. As predicted by the model, these effects are more pronounced at the Flory theta temperature 
than in good solvents. 
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I N T R O D U C T I O N  

In parts 1-3 (refs. 1-3, respectively), moderately concen- 
trated solutions of polystyrene were studied near the 
upper or lower critical consolute temperatures, so that 
the second virial coefficient A 2 is about zero 4'5. It was 
found in part 2 that the Rayleigh ratio R(q, c) exhibited 
a maximum as a function of the modulus q of the 
scattering vector q for concentrations c such that 
(6.8NAR3/M)c,~ [~/]c is in the range 1 to 6, where R G is 
the root-mean-square radius of gyration at infinite 
dilution, M is the molecular weight and [t/] is the intrinsic 
viscosity. In this study we will report the photon-count 
correlation function g(1J(r; q,c) for similar solutions 
under conditions for which A2=0.  The correlation 
function will be represented as6'7: 

g(2)(Z; q, c)--1 = [g(2)(0; q, C)--1][g(1)(Z; q, c)]  2 (1) 

g(1)(z; q, c )=  ~ r~ e x p ( - y v K t z  ) (2) 
V = I  

where r v and yv may each depend on q and c, ~ r~= 1, 
and the first cumulant K 1 is given by: 

COg(1)(T; q, c) 
KI( q, c )=  - l i m  (3) 

3 = 0  COT 

With use of equation (2), y. r ~ - - 1 .  
It is convenient to discuss R(q, c) and K 1 (q, c) in terms 

of the repeat-unit pair correlation function g(r) 7's. Thus: 

R(q, c) = KcMP(q, c)F(q, c) (4) 

MP(q, c)F(q, c)/m o = I g(r) exp(iq-r) dr (5) 
JF 
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where P(q, c) and F(q, c) are the intramolecular and 
intermolecular structure factors, respectively, and M and 
mo are the molecular weights of the polymer chain 
and the repeat unit, respectively. An expression for 
K 1 (q, c) in terms of g(r) is discussed below, as are specific 
functions to represent P(q, c) and F(q, c). We note, 
however, that for a monodisperse solute F(0, c) is related 
to the equilibrium osmotic modulus Kos: 

Kos = c ~FI/COc = cRT/MF(O, c) (6) 

Furthermore,  in the following, we will express F(q, c) in 
terms of P(q, c), a q-dependent interference factor H(q, c) 
and a q-independent function 1-'(c)2'7: 

F -  l(q, c) = 1 + cP(q, c)H(q, c)F(c) (7) 

where both P(q, c) and H(q, c) are unity for zero q, so 
that: 

KcM 
- - -  F -  1(0, c )=  1 +cF(c)  (8) 
R(O, c) 

In most cases, F(0, c)~< 1 (for a polymer solution, 
exceptions to the latter would usually correspond to 
incipient phase separation). In the limit for large q, 
F(oo, c )=  1, and P - l ( q ,  c) tends to proportionality with 
q', where e is model-specific, e.g. e = 2 for a random-flight 
chain 7'8. Since P(q, c) decreases and F(q, c) increases with 
increasing q (excepting extrema that occur with certain 
models, e.g. hard spheres9), a maximum in R(q, c) versus 
q is possible for q >0.  Such a maximum will occur if 
CO In R(q, C)/COq 2 = 0, where 

_ ( CO In F(q, c)~ CO In R(q, c) CO In P(q, c) 1 Jr (9) 
COq2 COq2 t~ In P(q, c)J 

Thus, if P(q, c) exhibits no extrema for q > 0, then maxima 
in R(q, c) require CO In F/cO In P = - 1. As discussed below, 
with dilute solutions, H(q, c) is often nearly unity, in 
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which case - ~ In F/~ In P cannot be unity. The behaviour 
for moderately concentrated solutions is discussed in the 
following. 

The first cumulant may be expressed in terms of an 
apparent diffusion constant Dapp( q, c) defined as 7,s : 

Davp(q, c) = K I ( q, c)/q 2 (10) 

where (with neglect of a factor of the solvent volume 
fraction, which is nearly unity for c of interest here): 

M MLs(q, c) 
Oapp( q, c)= (11) 

NAg(q, C) C 

Here, MLs(q , c)=cRT/MP((q ,c )F(q ,  c) and .=.(q,c) re- 
duces to the translational friction coefficient F. ° at infinite 
dilution. For qRG<< 1, D~pp(q, c) reduces to the mutual 
diffusion coefficient, given by: 

DM(c)= Kos/( M (12) 

where (M=NAE(C)C/M is the friction factor per unit 
volume, with .=.(c) equal to ~(0, c). This expression will 
be compared with experimental data on solutions at the 
Flory theta temperature in the following. 

Of course, F.(c) reduces to ~ ° = k T / D °  at infinite 
dilution, with D ° the translational diffusion constant, and 
in that same limit Kos = cRT/M,  making DM(C ) equal to 
D ° at infinite dilution. In the following, it is convenient 
to express =o in terms of a hydrodynamic radius, as: 

R H = E°/&r~/s (13) 

with ~?s the solvent viscosity. 
An approximate dynamic model has been presented 

leading to g(1)(T; q, c) in the form of equation (2) with 
m = 21 o, 11. A slightly modified development of that model 
is given in the Appendix, where it is shown that the 
parameters in equation (2) are given by: 

r I = 1 - r  2 = (1 -Y2)/(Yl -Y2) (14) 

1 
y . = ~  {(1 + f r ) - ( -  1)"[(1 +f~c) 2 - 4 r ]  1/2) (15) 

where tC=KlZ R and f =  I + A L / L .  Here, L is defined as 
Kos+4G.,  with G e the equilibrium modulus, and z s is a 
time constant for the (assumed) exponential relaxation 
of fluctuations AL. The behaviour predicted by equations 
(14) and (15) is shown in Figure I. As discussed below, 
possible values of AL may include the relaxation of 
fluctuations AK in the osmotic modulus or AG in the 
shear modulus. With this model: 

Kl(q,  c) = q2DM(C ) = q2L/( u (16) 

I f f ~  1, gtl)(z; q, c) collapses to a single exponential term 
at all q. However, if f >  1, two exponential terms con- 
tribute to gtl)(z; q, c). The limiting values of)~lgl/q 2 and 
72K1 predicted for fDMq2ZR > 1 are independent of q, and 
equal to Dse]=fD M and (fZs) -1, respectively, where: 

Os= l = (L + AL)/~M (17) 

Thus, for q2D~e~z a > 1, the scattering probes the response 
of a viscoelastic pseudo-gel, with a diffusion coefficient 
Dg,] proportional to the unrelaxed modulus L + AL, and 
a characteristic relaxation time fz R. Because ~2 ~<~'1, the 
contributions with subscripts 2 and 1 are sometimes 
referred to as the slow and fast modes, respectively 1°, 11. 
For larger q, the weighting factor of the exponential term 
with T2KI=(fzR)  -1 is given by r2=( f - -1 ) / f .  Thus, this 
contribution is negligible if f -  1 = AL/L << 1. 

For a swollen crosslinked polymer gel, L = Kos + ~G¢, 
and one can expect comparable relaxation times for the 
relaxation of fluctuations in the osmotic and shear 
moduli, so that AL = AK + ~AG. Further, since z, will be 
of the order of the longest Rouse relaxation time for the 
chain between crosslink loci, it is unlikely that ZRDM(C)q 2 
could become large enough to cause observable non- 
exponential behaviour in g")(z; q, c) on the light scattering 
timescale, even if f > 1. Equivalently, the effective values 
of Kos(0 ) and G(0) on the light scattering timcscale are 
normally so close to the equilibrium values Kos and G e, 
respectively, that A L ~ 0  and f =  1, as assumed in the 
first use of the preceding treatment, made to explain the 
observed exponential gtl)(z; q, c) for polymer gels 12. 

For a polymer solution, as studied here, G==0, or 
L = K o s ,  so that AK<<AG= G(0). In this case, Dee ~ refers 
to the pseudo-gel behaviour arising from entanglement 
constraints. Although the osmotic-modulus relaxation 
time may remain of the order of the longest Rouse 
relaxation time, the shear-modulus relaxation time may 
be considerably larger if c is large enough to produce 
entanglement effects a'laA4. In the latter case, z. becomes 
the shear-modulus relaxation time. In any case, since 
AK<<AG, it will be assumed that 4a-AL~ AG = G(0), and 
that on the light scattering timescalc G(0) may be 
approximated by the pseudo-network modulus GN, given 
by 7,s: 

c R T / c \  1 +s" 

where M e is the molecular weight between entanglement 
loci (for undiluted polymer) and p is the polymer density. 
The exponent s' is zero for a solution with A 2 : 0 ,  but 
may be larger for a solution with A2>>0; see below 7,s. 
Since the relaxation of the shear modulus is dominant, 
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Figure 1 The parameters given by equations (14) and (15) as a 
function of fr=fK1T R for various values of f: bottom, r2, top, ),1 r 
(----)  and Y2r ( ). Values of f arc 1.01, 1.1, 1.5, 2.0 and 5.0 for 
curves 1 through 5, respectively 
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AL=4GN/3 and f,~l+4GN/3Kos. With equations (6) 
and (18): 

{c\~+,' GN M F(0, (19) 

Thus, f will tend to be larger with poor solvent than 
with good solvent conditions owing to the factor F(0, c); 
see below. As c is reduced to the level below which 
entanglement effects no longer sustain the pseudo- 
network needed to make G(0)~ GN, ZR becomes of the 
order of the longest Rouse relaxation time, and G(0) is 
no longer approximated by GN. An approximate measure 
of this concentration may be the concentration c" such 
that for c >c"  the steady-state recoverable compliance 
R Cs~ is proportional to Gr~ ~ with GN given by equation 
(18). Typically, c"/c' is 2-4, where c' is the concentration 
for an abrupt change in d In ff/d In c (see part 1). 

EXPERIMENTAL 

The materials used here are described in parts 1 and 2, 
and the light scattering methods are described else- 
where 7'~5. Polystyrene PC 6a was used in this study. 
Conical shaped cells (6ml) were used, as in part 2. 
Solutions were filtered into the clean cells through a 
membrane filter (0.45 #m pore size), and sealed under 
vacuum after degassing. The cells were then centrifuged 
in a swinging bucket rotor (5000g). The (unnormalized) 
photon-count correlation function GtZ)(k; A~) was com- 
puted from M sets of data, each set comprising T=212 
sampling intervals, with each interval of duration AT~5: 

where n i is the photon-count number in the j th  interval, 
and k is an integer. In the instrument used, Az may be 
set equal to (3.2/#s)2 N, where N may be varied from 0 
to 16, and k may be varied from 1 to 512. Data were 
collected over a range of Az and k sufficient to charac- 
terize curvature in gt2)(z; q, c) for g(2)(l'; q, c ) -  1 ~> 10 -3 .  
Here, g(2)(z; q, c) was calculated as the ratio Gt2)(k; Az)/ 
G(2)(o0; AT) at q and c, with z=kAz, and G{2)(~ ,  Az) 
calculated as the square of the mean count rate (n)  per 
interval, averaged over the M independent experiments~5; 
M was adjusted to make the total number of counts 
MT(n) of order 10 6. For example, Az could be made 
small and k large to span the entire range in z needed in 
even increments, or the needed range could be spanned 
by a combination of experiments at different Az and k, 
so that larger increments are used for large than for 
small z. 

Static light scattering was measured with the same 
apparatus using a beam expander to form a scattering 
volume about 3 mm in height. As described elsewhere ~5, 
the incident beam was chopped and the data acquisition 
system was used to determine the mean count rate free 
of contributions from dark current. A secondary standard 
was used to calibrate the response to an absolute Rayleigh 
ratio, as discussed elsewhere 15. Reproducibility of R(q, c) 
was within 0.5% over a period of months. 

RESULTS 

Elastic scattering 
For dilute solutions, the experimental results give 

M w = 8.66 x 105 and R e = 27.0 nm, in good accord with 
results reported in the literature 16'17. The intrinsic 
viscosity is equal to 76 ml g-  1 in cyclohexane at the Flory 
theta temperature. 

As shown in Figure 2, for T = ® the scattering R(q, c) 
exhibits a maximum for q-  1 = q~ ~ ~ 40-50 nm for [r/]c 
in the range 2-10, similar to the behaviour reported in 
part 2. We remark, however, that although the qM and 
the R(q, c) for q > q~ obtained here are similar to those 
reported in part 2, the value of OR(q, c)/~q 2 for q < q~ 
obtained here is smaller than that found in the earlier 
work using cyclopentane. As with the previous study, the 
maximum in R(q, c) is lost with increasing T. 

The dependence of R(0, c)/c on c shows that F(c) 
depends on c, even when A 2 = 0. With the results obtained 
here, F(c)>0,  even though A 2 =0;  see below. Values of 
F(c) are given in Figure 3. The results give somewhat 
larger F(c) than computed from data on Orc/Oc given in 
ref. 18 for the lower c[q] range, but agree with data on 
F(c) given in ref. 19 for larger c[r/]. The reason for the 
discrepancy at the lower c[q] is unknown to us. It is 
assumed that P(q, c) = P(q, 0) at the Flory theta tempera- 
ture, so that H(q, c) may be computed from the observed 
R(q, c), with the results shown in Figure 4. The decrease 
of H(q, c) with increasing q for small q is a reflection of 
the maximum in R(q, c). (It should be noted that the 
function H(q, c) was denoted Q(q, c) in part 2, but the 
notation is changed here to avoid confusion with a 
function introduced in the following, denoted Q(q) by 
convention.) 

As in part 2, H(q, c) will be represented by the empirical 
expressions: 

2 

H(q, c)= ~ Hv( q, c) (21a) 
V = I  

nv(q, c)=h~(c) exp(- 2e~a2q 2) (21b) 

2a 2 = lim dP-  l(q, c) (22) 
= o aq 2 
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Figure 2 Plots of R(O, c)/R(q, c) versus (aq) 2 for solutions of poly- 
styrene in cyclohexane at 34.8°C: [t/]c equals 0.091, 0.60, 1.15, 1.73, 
2.68, 4.64, 4.69, 6.54 for panels 1 through 8, respectively; a= 11 nm. 
Data for experiments on a given sample at different times are identified 
by the pips 
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Figure 4 Plots of In H(q, c) versus (aq) 2 for the solutions identified in 
the caption to Fioure 2; a=  11 rim. The full curves are merely to guide 
the eye 

A partial justification for the form of these expressions 
is discussed in the next section. In the limit of infinite 
dilution, a 2 = R2/6. Thus, 6a 2 represents the mean-square 
radius of gyration at concentration c. By analogy with 
the behaviour for low c, P(q, c) is assumed to have the 

f o r m :  

P(q, c),~ [1 + (aq) 2] - 2  (23) 

for flexible-chain polymers7--this relation provides a 
close approximation (within 10%) to the Debye ex- 
pression 7 for P(q, 0) for qR G < 2.4. As mentioned above, 
a 2 is presumed to be equal to R2/6 at the Flory theta 
temperature. 

Extrapolation of KcM/R(q, c) for q > qM to q = 0 gives 
an intercept l+ch2(c)F(c). Estimates of hi(c) were 
obtained by analysis of the data with q < qM using a plot 
of ln{[R(q, c)/KcM] - e ( q ,  0)[1 + cn2(q, c)F(c)]} versus 
q2. This treatment gives hi~c) nearly independent of c 
(h 1 (c) ~ 0.83 _ 0.05), and h 1 (c) ~ 0.2h2(c), in comparison 
with hl(c)~h2(c ) observed in part 2. Further, cF(c)~ 
0.195([q]c) 2 here for c[q] > 2 (see Figure 3), in comparison 
with cF(c)~O.50([rl]c) 2 reported for polystyrene in 
cyclopentane. 

A correlation length b defined as: 

b2 = OR(O, c)/g(q, c) (24) 
0q  2 

is sometimes introduced in discussion of R(q, c) ~ ~,~9-21. 
Evidently, for the results obtained here, b so defined is 
a function of q, and is negative for small q. A useful 
comparison with prior treatments may be obtained by 
inspection of b calculated for q > qu. Values of b obtained 
in this range of q are essentially independent of q; the 
results are given in Fioure 5 in the form bib o versus It/]c, 
where b 2 = R2/3. Results from part 1 are included for 
comparison. 

Quasi-elastic scatterino 
Data on  g(2)(z; q, c) were analysed in the form 

Z(z; q, c)= {ln[o(2)(z; q, c ) -  1] x/2 +DApxq2z} versus q2z, 
where DAPx is chosen to be close to DM=Klq -2. This 
form is motivated by the cumulant expansionr'7: 

In 9(1)(z; q, c)= - K a z  +½#2(K~z) 2 -~pa(K~z)3 + . . .  

(25) 

where P2 is a normalized second cumulant ~2 K2 being 
the second cumulant), etc. The cumulant expansion may 
be used in equation (1) to give the relation: 

Z(z; q, c)= ½ In[0(2)(0; q, c ) - 1 ] -  (Dapp-OAPX)q 2z + ' ' "  

(26) 
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Figure 5 Bilogarithmic plot of  b (see equation (24)) versus c[~/], for 
solutions of polystyrene at the Flory theta temperature. The triangles 
give the results obtained here for solutions in cyclohexane (34.8°C). 
The remaining data are taken from part 2 (see Figure 8 of part 2 for 
notation) 
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where DAp x is an estimate of Dap p (e.g. obtained by an 
initial analysis with DApx=0). The initial slope of 
Z(z; q, c) versus q2z is expected to be independent of q, 
and equal to the difference between DM and DApx. Since 
the difference may be made small, an expanded scale may 
be used for Z(z; q, c) to facilitate estimation of DM. As 
expected, OZ/a(q2z) was found to be independent of q for 
small ~. 

Values of DM(C) computed from Kx(q, c) for small q 
and [~/]c<0.2 are fitted by: 

DM(C) = D°(1 + ko[q]c) (27) 

where D ° = l . 4 8 x 1 0 - T c m 2 s  -1 and kD=--0.53 (see 
below). These results are in good agreement with values 
reported in the literature n-z7.  The results obtained for 
O,(c)/D ° for the entire range studied here are given in 
Figure 6. The results are similar to data reported in two 
other studies at the Flory theta temperature 2~'29, but 
differ from data on solutions of polystyrene in tetrahydro- 
furan 3°'a1 for which A2>>0, e.g. see ref. 7. 

For  larger q, the observed gt2)(z)_ 1 could not be fitted 
by a single-exponential function for solutions with 
[r/]c >~ 1, e.g. see Figure 7. The results could be approxi- 
mated by use of equation (2) with m = 2. In this analysis, 
the four parameters ( r ~ , r 2 = l - r  1, 7x and 72) w e r e  
determined by a non-linear least-squares fit of equation 
(2) (m = 2) to the experimental data. Since the root-mean- 
square (r.m.s.) deviation of the experimental data from 
the computed 9~2)(~; q, c) seemed to be systematic in ~, 
and to be slightly larger than the r.m.s, noise, an 
alternative inversion of equation (2) was also examined. 
In the latter, an inverse Laplace transform method 32-34 
was used to invert equation (2). The method was 
implemented by procedures described elsewhere ~'~, using 
four or five points (m = 4 or 5) spaced at equal increments 
of In 7, from In 7mi. to In 7m.~- Here, 7m2~ is no smaller 
than the smallest KI Ax used, and - 7ram. is no larger than 
the value of K G  for which g¢2)(~; q, c ) -  1 is above the 
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Figure 8 Plots of r v versus Kx7 ~ computed from 9~2)(z) for a solution 
of polystyrene PC 6a in cyclohexane at 34.8°C (c[q] =6.54, 0= 120°). 
The data were computed with m = 4, as discussed in the text (see Figure 
7). Although one such set of four contributions represent the data, the 
results for four computations using different 7v sets are interleaved to 
illustrate better the breadth of the distribution--the r~ shown are 
normalized to sum to unity over the four sets 

noise level. In practice the values o f t  I and 72 determined 
in the fit of equation (2) with m = 2 were used to guide 
the choice of 7ms., 7ma~ and m. A typical result is given 
in Figure 7, along with the residual error in the fit to 
ln[gt2)(z)- 1]. This process was repeated for several 7mi,, 
using the same increment in In 7 to reconstruct r(7), as 
shown in Figure 8 for one example. A binodal distribution 
is apparent in Figure 8. Each peak may be characterized 
by an average F~ and ~7~ by a cumulant analysis on the 
component of 0re(z) computed for the 7 range spanned 
by the peak. Under conditions for which the two modes 
could be clearly identified, the results on Fi and ~7~ obtained 
in the latter treatment were found to agree within 4 -6%  
with the parameters determined with m =  2. Situations 
where two modes could not be clearly identified are not 
treated here. The breadth of the individual modes could 
usually be characterized by (#2)i~0.1-0.2, where (~2)i is 
the normalized second cumulant for the ith mode. These 
are larger than expected if gin(z) is actually given by 
equation (2) with m=2 ,  with the addition of random 
noise. For  example, for gin(z) computed over the usual 
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z range using the ~ and y~ found as above, and including 
random noise, the inverse Laplace transform analysis 
leads to two modes, each characterized by #2 ~0.05; this 
is close to the resolution limit of the method for the T 
range used a*. Even though the inverse Laplace transform 
analysis suggests that equation (2) with m=2  is not 
strictly followed here, the dominant feature of two distinct 
modes is confirmed. In the discussion to follow, the 
breadth of the individual modes will be neglected, and 
equation (2) will be used with m= 2. Results are shown 
in Figures 9 and 10 for several concentrations. The data 
are presented as the parameters f2 (~ = 1 -~2), K ~  and 
K2~ 2. The full curves in Figures 9 and 10 are discussed 
below. 

DISCUSSION 

Elastic scattering 
Behaviour at the Flory temperature. The principle 

feature in the static scattering is the dependence of F(c) 
on c at the Flory theta temperature. According to the 
usual treatments utilized at low c, the function g(r) 
appearing in equation (5) may be expressed in terms of 
the potential of mean force on N solute molecules aS. 
Expansion ofg(r) in a series in c gives r(c) and H(q, c)F(c) 
as series in a reduced concentration d, such that35'36: 

CF(C) = 2~k2~ + 3~bad 2 + " "  (28a) 

cH(q, c)r(c) = 2Q(q)~k2d 

+ {3W(q)~k a+4[P(q, c)Q2(q) - W(q)]~k2}d 2 + . . .  (28b) 

where d is given by: 

~=NARac/M (29) 

and the dimensionless ~b~ are defined by: 

d/; = AjM(M/NAR3y- ' (30) 
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sin 2 8/2 

Figure 9 Plots of KI~ 1 and KI~ 2 versus sin2(0/2) for solutions of 
polystyrene in cyclohexane at 34.8°C. The curves for K i l l / m s  -1 and 
Kl~2/ms -1 are offset by 2.0ms -~ and 0.Sins -I  between data sets, 
respectively, for clarity. Concentrations decrease from bottom to top, in 
the order given in Table 1, except for the uppermost two data sets, for 
which cl-r/] is equal to 2.12 and 1.66, respectively. The full curves give 
KW1 or Kl'~2 calculated with equation (15) using the parameters in 
Table, I. The broken curves are merely to guide the eye 
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Figure 10 Plot of r2 versus sin2(0/2) for solutions of polystyrene in 
cyclohexane at 34.8°C. Starting at the bottom of the figure, the pips 
rotate anticloekwise with decreasing c[r/] in the order given in Table I 
except for the uppermost two data sets, for which c[~/] is equal to 
2.12 and 1.66, respectively. The full curves represent r 2 calculated with 
equations (14) and (15) using the parameters in Table I. The broken 
curves are merely to guide the eye 

with A~the jth virial coefficient; d is of order unity when 
the average separation of chain centres is R e. Since 
Er/] ~ 6.8NAR~/M for flexible-chain polymers with large 
M TM,  d~rr/]c/6.8. The functions Q(q) and W(q) are 
discussed below. As seen in equation (28), cF(c) is equal 
to 3~k3 d2 or F(c) = 3AaMc, for small c if A2 = 0, permitting 
determination of Aa under such circumstances. Under 
conditions with A2=0, to first order, A 3 may be 
expressed in terms of an interaction parameter 2337'38: 

A3Ma/N2R 6 = (4/t)az3/3 (31) 

In fact, a theoretical treatment for moderately concen- 
trated solutions gives (see the Appendix)a9: 

F(c) = 3(1 - koz~/2)AaMc (32) 

for A2 = 0 and small za, where k0 = (5/24)(2rc/3) u2 ~0.30. 
Thus, under these conditions F(c) ~ 3AaMc, even though 
the sample is not dilute--a similar approximation has 
been used previously to estimate z33s'4°. Making this 
identification, the results in Figure 3 give if3 = 3.00 and 
z3 =0.0045. If expressed in the form: 

3AaMa/N2R6=k3([rl]M/NAR~) 2 (33) 

convenient for use in the following, then k3=0.195 for 
the system studied. 

The appearance of A a > 0 under conditions for which 
A 2 = 0  implies that the ternary cluster integral fla for 
segmental interactions does not vanish when A 2 = 0. The 
parameter z a is independent of M and proportional to 
fla- In general, the binary cluster integral f12 is expected 
to depend markedly on T, being zero at some tempera- 
ture, whereas f13 is positive and only weakly dependent 
o n  T 2'4°-42.  For the system studied here and in part 2, 
za computed from F(c) is independent of M, as expected, 
with z3~0.0045 for polystyrene in cyclohexane, or 
za ,~ 0.012 for polystyrene in cyclopentane. Similar values 
have been reported elsewhere 4°'41. 

Calculation of -4 2 using a perturbation theory shows 
that for ,42 nearly zero: 

~k 2 =4rca/z(~ + - . .  ) (34a) 

= z + 8 Z a E ( M / 4 n o m o )  1/2 - 1] (34b)  
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where no is a constant of order unity 3s, z3 ocfl3, and 
z oc fl2M2R~,a o. (The original treatment 37 including ternary 
interactions differs negligibly from equation (34) for large 
M, through omission of the term - 1  in the square 
brackets in the expression for ~.) Consequently, ~2 may 
be considered to depend on an interaction parameter 
that is proportional to M 1/2, and vanishes when A 2 =0. 
As z3>0, this requires that z < 0  when ~=0. Data 
on A2(T) for polystyrene in cyclopentane have been 
analysed 4 to give £ = 0.0050{1 - O / T ) M  1/2. If z 3 ~ 0, then 
the coefficient 0.0050 must comprise contributions from 
both z and z3. 

In terms of the parameters in equation (7), the 
correlation length b is given by: 

b 2 = b~[1 + cF(c)(~H/BP- ')]/[1 + cF(c)] (35) 

where bo 2 = 2a2= R2/3. In the simplest case, BH/dP-1 is 
zero, as frequently obtained in dilute solutions 7, but for 
the solutions studied here the situation is more complex; 
see Figure 4. For q < q~, dH/~3P- 1 is negative if [~/]c > 0.5, 
and since cF(c)(8H/dP-1)< _ 1, b 2 is also negative. For 
q > qr~, t3H/~P- ~ is positive and almost independent of q 
if [~/]c > 0.5, so that b likewise is positive and independent 
of q. Of course, this relation fits the observed b/bo using 
equation (21) to represent H2(q, c), as should be expected. 
It has been assumed s that for moderately concentrated 
solutions, g(r) can be represented by the Ornstein- 
Zernicke approximation, g{r)oC(~o/r)exp(-r/~o), in 
which case b = ~o for all q, and: 

¢o(C) oc Ro/{d[1 + cF(c)]} 1/3 (36) 

where the factor in the denominator is dimensionless. 
This expression may be expressed in the form: 

R~/~o(C)= {(rrl]c)(2+p)s(rrl-lc)/6.8} 1/3 (37) 

Here, p =  1(1 -g ) / # ,  where /~=3v -  1 ~ d  ln[t/]fl~ In M, 
with v = d In R~/d In M, and: 

1 + cF(c) 
S([r/]c) = (38) 

([~]c) ~ ÷ .  

This relation gives Ro/~o(C) oc [~]c for large c at the Flory 
theta temperature (p-- 1) since S tends to a constant with 
increasing [~]c, e.g. S tends to about k3 for A2=0. 
Although the predicted inverse proportionality of b on 
c has been reported ~9'21, the result obtained here is more 
complicated, and equation (37) overestimates the de- 
pendence of b on c. A possible model to estimate the 
function H in equation (7) is discussed in the next section. 

Smooth-density models at the Flory temperature. In the 
preceding it was observed that for a moderately concen- 
trated solution under conditions with A2=0  and A 3 
small, the simple behaviour given by equation (28a) 
truncated at the second term suffices to describe cF(c). 
Under these conditions, the renormalization needed in 
the moderately concentrated solution leads to consider- 
able simplification. It follows that this same simplification 
applies to equation (28b), so that calculation of W(q) 
and Q(q) will provide an estimate of H(q, c). In the 
following, use is made of a smooth-density model to 
estimate the functions appearing in equation (28). In 
so-called smooth-density models, the actual chain is 
replaced by an object with spherical symmetry and 
a potential of mean force V(So) on molecules with 
centre-of-mass separation Sq as. Under certain approxi- 
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mations 35, these models lead to the results: 

_2nR~3 I ° $22G12 sin(qS12) dS12 Q(q)P(q, ¢)~2 
J 0  qS12 

(39) 
W(q)P(q, c)(3~k 3 - 4~b 2) = 

f 1" ~'sin(qS12) . . . . .  -R;o jjj I LO:I 2 (J:, 3(J;23 "J- G, 3623] 

+(I+GI2)(I+GI3)(I+GE3)Yx23} dS~2 dS13 dS2a (40) 

where the integration in equation (40) is over all 
separations of the centres of mass under the constraint 
that S~2 + S~ 3 + S2a = 0. In these expressions: 

Gii = e x p [ -  V(SiykT] - 1 (41) 

Y123 = e x p [ - A V ( S 1 2 ,  S13, S23)/kT] - 1 {42) 

where AV(S12 , S13 , $23 ) is to account for interactions 
among three chains that do not vanish with vanishing 
V(Si~)---AV is usually put equal to zero 3~ (see below). 

Of course, these relations also give A 2 and .43 in the 
limit of zero q. Inspection of equations (39) and (40) in 
that limit shows that A 3 need not be zero when A2 
vanishes, even under conditions for which AV= 0. Thus, 
G12 need not be zero to obtain A2 =0,  rather an integral 
over G12 must be zero. Consequently, with G12 not zero, 
the multiple integral needed to compute A 3 may not 
vanish even though A2=0.  However, with the most 
commonly used expressions for a class of 'two-parameter 
theories', AV=0,  and V(Su) is scaled by an interaction 
parameter z that vanishes when A2=0. With such a 
model, Ga2 is identically zero when z=0 ,  and conse- 
quently A 3 vanishes along with A 2 when z=0 .  The use 
of two such potentials to compute A 2 is discussed in the 
Appendix along with the calculation of A 3 for one case. 
With two-parameter models, ~b 3 may be expressed in the 
form: 

~/3 = ~b2J(~/2) (43) 

where the function J(~2)  depends on the model. For 
example, for a model discussed in the Appendix: 

J(~b2) = ~bE/3na/2(1 + k~b2) 3/2 (44) 

where k~ is a constant appearing in an expression for 
Q(q) (see equation (A.24) in the Appendix)--k~ is 
expected to be close to zero. 

As revealed by the c 2 dependence of cF(c) observed 
when A 2 : 0 ,  the approximations in the two-parameter 
theories must fail with increasing c as the polymer 
segment density increases. A revised treatment could be 
attempted with V(Sij) not identically zero under con- 
ditions for zero A 2, containing contributions that scale 
with r2 and f13. Alternatively, we will more simply let 
V(S~j) scale with ~, and approximate the particular effects 
of non-zero z3 by use of a potential AV/kT that scales 
with z3, being non-pairwise additive with the potential 
dependent on ~. In this case, ~k 3 becomes a function of 
both ~ and z3 if A2¢0.  Unfortunately, theoretical 
guidance on AV is lacking. To investigate the features of 
non-zero AV, we will approximate 11123 in the spirit of 
a Flory-Krigbaum smoothed-segment-density model 
(see the Appendix), with 11123 the product of three 
Gaussian functions: 

Y123 = (-- y0-3)3 e x p [ -  0-2(S22 + S23 "q- S~23)/R 2"] (45) 

where both Y and 0" 3 are expected to depend on z3. 
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Further, since ~=0, the G~j are all zero and ~'a becomes 
a function of za alone. Equation (45) is motivated by the 
form of a potential discussed in the Appendix (equation 
(A.25)). Under these conditions, calculation with equation 
(40) gives (for conditions with A2 =0): 

3 2 6 A a M  /NARG = (7~3/35/2)(Ytr3) 3 (46a) 

W(q) = expl - e'(qRG)2/3] (46b) 

e '= (1/2tr 2 ) -  1 (46c) 

It may be noted that e '=0  for tr~ -2=2, with e '>0  for 
larger try-x and e' <0  for smaller a~-1. Consideration of 
equation (9) shows that a maximum in R(q) requires 
e' > 0, or try- 2 > 2 with this model. The experimental data 
for q < qM give e' ~ 10. Accordingly, a 3 x ,~ 4.7 and Y= 3.4. 
Thus, in this model the maximum in R(q, c) versus q 
results from a net repulsion among chain centres under 
conditions with A2 = 0. 

Quasi-elastic scattering 
The mutual diffusion coefficient. The experimental 

results obtained here give RH=20nm and Ro/Rn= 
1.35 at the Flory theta temperature. According to the 
theoretical treatment as'4°, under this condition: 

go/g a = (g~.o/Rn.o)(1 -20.31z 3 + . . .  ) (47) 

where R G o/RH o = 8/3nl/2 ~ 1.505 for a flexible chain with 
large M ~'s. With the estimate z3=0.0045, RG/Rn is 
predicted to be 1.37, in good accord with the measured 
value. 

For dilute solutions, the use of equation (12) is 
facilitated by expansion of Kos and (M in virial expansions, 
to give equation (27) to first order, with3S: 

k D = ( 2 -  C2) A 2 M  -- C1 (48) 

Thus, at the Flory theta temperature, k D = -C1 .  Theor- 
etical expressions for C1 may be expressed in the form: 

Cz = B(4nN A/3 )R~MOI] (49) 

where theoretical estimates of the numerical coefficient 
B vary from unity to 2.234a-~6. By comparison, the 
experimental value Ct = 0.53 gives B = 1.7. 

For moderately concentrated solutions the use of 
equation (12) requires a hydrodynamic model to represent 
(U" According to one treatment given in the scaling limit 
with ~>> 17'a: 

Z(c) M ~(c) 

_ R H mt ((0) F(0, c) - -  (50b) 
Co(C) ((c) m2 

where ((c) is a repeat-unit friction factor at concentration 
c, and: 

o 

m.= x"o(x) dx (51) 

with x=r /¢  o. Combination of equations (6), (12) and 
(50) gives: 

DM(C)_ Rn ~(0) m 1 
(52) 

D ° Co(C) ~(c) m2 

If the pair correlation function is given by the 

Ornstein-Zernicke relation #(x) = x -  1 exp ( -  x), then 
m: =m247, and making use of equation (37) for Go: 

OM(c)((c)/O°((O) = (RH/RG) { (I-~/]c) 2 + PS([q]c)/6.8) 1/a 

(53) 

where S is given by equation (38). Making use of the 
relation cF(c),,~ka([q-]c) 2 obtained here for solutions of 
polystyrene in cyclohexane at the Flory theta tempera- 
ture (k 3 = 0.195 for the former), equation (53) becomes: 

DM(c)~(C) 
DO((O) -K~Ol]c{l +k3~([q]c)-2} t/a (54) 

where K¢=(R./RG)(ka/6.8) i/a, or K¢=0.23 with R o =  
1.35RH. This result, which shows theproportionality of 
DM(c)((c) with c predicted by this model for large [q]c, 
is compared with the experimental data in Figure 6; the 
agreement with equation (54) is poor. Here, use is made 
of the expression C(c)/((O) = exp(br~) determined in parts 
1 and 3, where ~ is the weight fraction polymer and br 
is a constant (2.7 at the temperature studied here); the 
disparity would be larger if it is assumed that ((c) = ((0). 

The deviation from equation (54) is attributed to the 
expression for E(c) leading to equation (50). According 
to the relations given above, for ~ >> 1: 

-=(c) ¢o(C) ((c) 
- [1 + cF(c)] - -  (55) 

~o R .  ~(0) 

For t<< 1, a series expansion of E(c) givesaS: 

E(c)/E ° = { 1 + kl [t/]c + k2cF(c) + . . .  }[((c)/~(0)] (56a) 

[1 + cF(c)] k~ exp(k x [q]e)[((c)/~(O)] (56b) 

where kl and k2 are constants; the factor ((c)/~(O), which 
is close to unity for small c, is included for convenience. 
The expression: 

=-(c)/~- ° = [1 + cr(c)] 

x {exp(- k 1 [q]c)[1 + cr(c)] 1 -k: + RH/~o(C) } - 1 [~(c)/((0)] 

(57) 

provides a reasonable representation of both equations 
(50) and (55) for the range of c studied here. As seen in 
Figure 6, use of this relation in equation (12) fits the experi- 
mental results with K~=0.173, k~=0.95 and k2=0.5. 
These values of k~ and k2 are in the range expected for 
flexible-chain polymers as. This result indicates that the 
conditions required for the use of equation (50) alone for 
E(c) are not met for the range of 0/]c studied here. The 
value of 0.17 for K¢ in place of the theoretical 0.23 may 
reflect the approximations made in the derivation of 
equation (50) or in the form used for g(r). 

The nature of gt2)(T;q,c). As discussed above, 
[-gt2)(Z; q,  C ) - - I ]  1/2 is an exponential function of z for 
[q]c < 1, but displays a non-exponential behaviour fitted 
by equation (2) (with m = 2) for [~/]c > 2 and large q. The 
parameters K771 and K1~72 and weight factor ~2 = 1 -~1 
given in Figures 9 and 10, respectively, show that Kly~/q ~ 
and Kay 2 tend to constants, independent of q, with 
increasing q. The behaviour is similar to that given by 
the theoretical model discussed in the 'Introduction'. 
With this model, the limiting value of K171 for q= 0  is 
given by ~ 1, and the limiting values of Kl?2 and r 2 for 
large q are (fZR) -1 and (f--D/f ,  respectively. Under 
appropriate circumstances, these relations may provide 
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Table 1 Parameters  for non-exponential  photon-count  correlation" 

c[r/] c M w / p M  c Dra/D ° z R (ms) f ( f  - 1)c/p 

8.31 2.84 0.635 0.55 1.62 0.063 
7.91 2.70 0.601 0.51 1.67 0.065 
7.33 2.51 0.595 0.48 1.70 0.063 
6.54 2.24 0.581 0.30 1.75 0.060 
6.06 2.07 0.568 0.22 1.78 0.058 
4.25 1.45 0.493 0.16 2.10 0.058 
3.66 1.25 0.459 0.12 2.00 0.045 

[q] = 76 cm 3 g -  ~ ; p M  c = 33 200; and D ° = 1.48 x 10- 7 cm 2 s -  

estimates o f f  and ZR- The initial tangent to K~71 is equal 
to K1. As shown in Figure 9, that initial tangent is 
observed only for very small q for the solutions studied 
here. The experimental data on ~2 (= 1-~1), ~ and ~2 
as functions of q were fitted by a non-linear least-squares 
regression using equations (14) and (15) to obtain the 
two parameters zR and f to fit the observations best. The 
calculated curves are compared with experimental data 
in Figures 9 to 10, and values of ZR and f are given in 
Table I. The satisfactory agreement between experiment 
and the calculated curves provides support for the 
approximate dynamic model. The values of ZR and 
(f--  1)(c/p) are compared with the theoretical predictions 
in the following; the latter product is seen to be essentially 
independent of c. Consequently, variation o f f  with e is 
small (but not entirely negligible) over the range of c 
studied. The variation of ZR is more pronounced. Thus, 
with decreasing c, for the solutions studied here zR 
decreases to such an extent that fx  does not exceed unity 
by much. In that case, r 2 >> r 1 and g(1)(Z; q ,  e) is dominated 
by the contribution with v =2, i.e. r2 approaches unity 
and near-single-exponential behaviour is obtained, even 
though f exceeds unity. 

As discussed in the 'Introduction', f -  1 = AL/Kos for 
a polymer solution. If AL=4GN/3, use of equations (19) 
and (38) gives: 

f - l =  4GN 4 (p/c) 1-3~-s' s-~([~]c)  (58) 
3Kos 3 ([~/]=p)l/u 

for d > 1, where [q]= is the intrinsic viscosity for a polymer 
with M =  M~ (in the solvent used to determine f ) ,  with 
M= the molecular weight between entanglements. The 
exponent s' is defined in equation (19) and s= (1-p)/3. 
As discussed in part 3, s '=0  for A2=0, and one 
approximate treatment s gives s '= 1/4 for large A 2 if 
#=4/5; these results are reproduced with s'=s= 
(2#-1)/3/~, which gives 1-3s-s'=(4-51~)/3#. The 
latter is unity for #=  1/2 and zero for #=4/5. Under 
conditions for which A2=0, then #=  1/2, s = s ' = 0  and 
S = 0.195 + ([r/]c)- 2 for polystyrene in cyclohexane at the 
Flory theta temperature. Using constants for polystyrene 
in cyclohexane at 34.8°C, (f-1)(c/p)~0.062, in good 
agreement with experiment (see Table I). In this cal- 
culation, M== 16000, in accord with measurements 4s 
on RN=Gff 1 and other data 13'49 on G N. 

For a solution under conditions with A2>>0, the 
exponent 1 - 3 s -  s' is equal to (4 -  5#)/3/~ if s = s' = 
(2#-1)/3/~, as discussed above. (Note that [q]¢ > [qJ=,e-) 
Use of the appropriate parameters for polystyrene in 
toluene, including an estimate for S based on the data 
in part 2, gives f--l,~O.O12(p/c) °'~, so that f ~ l .  
Consequently, non-exponential behaviour in g(a)(z; q, c) 
should be much suppressed in that system. This trend 

was observed in this study with increasing temperatures 
T > O for solutions of polystyrene in cyclohexane. A more 
detailed discussion of behaviour in good solvents is given 
elsewhere5°'51. 

According to the theoretical model given above, in the 
range q2>fx for which ~,2K~ is independent of q, 
(~2K1)-1 =fTR. With the constitutive equation discussed 
in the Appendix: 

T R ~,~ ( ? ]  - -  I/s)R N (59) 

where q is the solution viscosity and RN= Gff 1. More 
realistically, g(t) should be expressed as a sum of weighted 
exponentials with: 

g(t) = ~ gi e x p ( -  t /r,) (6O) 

where Y~ gi = 1 and z, > zi_ 1. In  this case, it is reasonable 
to approximate z R by the average z c defined by: 

zc = (r/- ~/,)R (s) (61) 

where R (s) is the steady-state recoverable compliance, 
given by: 

R ( S ) =  RN ~ giZ/2 (62) 
(E g~T,) 2 

As discussed in part 3, R(s)~3R (N) for polystyrene 
solutions. Values of Zc and zN ~ Zc/3 calculated with r/ 
and R (s) based on data in parts 1 and 3 are given in 
Figure 11, along with za as a function of cM/pM c. 
Here M c = 31000 is the critical molecular weight from 
viscometry (see part 1). The results give ZR between TN 
and ~c, tending towards z N for larger cMw/pMc, and 
towards Vc for smaller cM,/pM c. This appears to be 
reasonable, in consequence of the loosening character of 
the pseudo-network with decreasing cM,/pMc. 

Although f increases with decreasing c, the parameter 
f xq- :  =fDuzRq: decreases with decreasing c owing to 
the marked dependence of T a ~Zc on c. Consequently, 
even though f may exceed unity, the condition fx>> 1 
required to observe ~ 2 K 1  independent of q is not met in 
light scattering studies if c is too small. For the 
concentration range of interest, in a system for which 
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Figure 11 Bilogarithmic plot of zR versus c M . / p M  c for solutions of 
polystyrene in cyclohexane at 34.8°C (PMc=33  200). The full and 
broken lines give Zc and Zc/3 ~ ZN based on data  in parts 1 and 3 

POLYMER, 1990, Vol 31, May 801 



Elastic and quasi-elastic light scattering: S.-J. Chen and G. C. Berry 

A 2 = 0 ,  R(s)~3/GN (part 3 ) a n d :  

rl ~ N AK,t(cM/pMe)3"4~(c) (63) 
where K ,  is a constant  (part 1). Thus,  using equat ions 
(18) and (59), Duzc is p ropor t iona l  to R2H(CM/pMe) 2"4, 
and fDMzrt decreases rapidly with decreasing c ifz R ~ z c. 

C O N C L U S I O N S  

The max imum in R(q,  c) observed as a function of  q for 
moderate ly  concentra ted solutions of  polystyrene at (or 
near) the Flory  theta temperature is ascribed to an 
effective repulsion a m o n g  chain centres, as in a liquid. 
The repulsion is not  predicted by the classical two- 
parameter  theories of  polymer  solutions, but  can be 
unders tood  in terms of  three-body interactions that  do 
not  vanish at the theta temperature.  Interchain inter- 
actions are also implicated in non-exponent ia l  behaviour  
observed in the quasi-elastic light scattering. The effect, 
which gives a (nearly) double-exponential  decay in the 
electric-field correlat ion function, can result in one 
componen t  with a q-independent time constant .  A 
viscoelastic model ,  found to represent the data  obtained 
here, predicts that  the non-exponent ia l  behaviour  should 
be much stronger at the Flory  theta temperature  than 
under  ' good  solvent '  conditions.  
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A P P E N D I X  

A dynamic model f o r  ff(1)(T, q, c) 

Fol lowing the t reatment  in refs. 10-12, the displace- 
ment  u(r, t) of  a material  point  on a polymer  chain (e.g. 
a repeat unit) at posi t ion r at time t is assumed to obey 
the relation: 

o*(t)--(M ~ + A ( r ,  t ) = 0  (h.1) div 

where o(t) is the stress tensor for a volume element 
containing the material  point,  ~M=NA'~(C)c/M and 
A (r, t) is a r andomly  fluctuating force acting at r (i.e. the 
effects of  Brownian  mot ion  a m o n g  the solvent molecules 
on the polymer  chain). Fur ther  it is assumed that  the 
componen ts  of  ¢(t) may  be expressed by the constitutive 
equat ion for a linear viscoelastic material  such that  (in 
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Cartesian coordinates)13: 

au( t )=2J '~  G(t-s)  
&o(s) ds 

-- go ~ S  

f '  Oekk(S) ds "Jt-(~iJ [K°s(t--s)--2G(t--s)] Os (A.2) 
- - 0 0  

where 6~j is the Kronecker delta, 

1 {Ou~(t) ~ui(t)'X ) (A a) 

and the summation convention is assumed for double 
indices. In equation (A.2), G(t) is the shear modulus, 
which may be expressed as: 

G ( t )  = G e -{- AGog(t/ZR) (A.4) 

where AG= G(O)-G~ and ZR is an average relaxation 
time. The equilibrium compliance G~ is zero for a fluid. 
Although g(t/zR) would typically represent a sum of 
weighted exponential functions of t (see text) 3'13, it is 
convenient for purposes here to let g(t/ZR)~ exp(--t/Zs). 
The osmotic modulus Kos(t ) for the pseudo-network 
formed by the copiously intertwining polymer chains in 
a moderately concentrated solution is equal to MLS(0, c)= 
c OH/Oc for large t (i.e. at equilibrium), so that: 

Kos(t) = Kos -I- AKk(t/z~) (A.5) 

where AK=Kos(O)-Kos,  k(t/z'R) is a function that 
decreases from unity for t = 0 to zero for t = o% and z[ 
is an average relaxation time that may or may not be 
equal to ZR; see below. In the theoretical treatment, 
equation (A. 1) is used to obtain a solution for the Fourier 
transform u(q, to) of the displacement vector u(r, t). 
Owing to the isotropic nature of the effects of interest, 
one may put q = (0, 0, q) without loss of generality, with 
a~ = (ill, f12, fis). Solution for fi3(q, to) for no external forces 
then gives 1 o,,, : 

where 

f~*(q, to)fi3( q, to)= 0 (A.6) 

f l *  = f~' + ifY (A.7a) 

{L[1 + (toz,) 2] + (toZR) 2 AL} (A.7b) 
q2 

fg(q, to)= 
1 "Jr ((-DZR) 2 

q 2 t o Z R  ( ~M El + (tozR)2] + AL)  (A.7c) 
n"(q, ~o)= 1 + (toz.) 2 

Here, L=Kos+~G ~, and AL is equal to ~AG(0) if 
k(t/zR),,, O, or to AK + 4AGo/3 if k(t/z'R) = g(t/ZR) = 
exp(-- t/ZR). With this result, gtl)(z; q, c) is given by ~°'1 * : 

g(1)(z; q, c)=S(z; q, c)/S(O; q, c) (A.8a) 

S(z; q, c )=  {fy(to, q)/[fl.(to, q)]2} exp(itoz) d In to 
- o o  

(A.8h) 

With the preceding expressions, g~)(z; q, c) is given by 
equation (2) with r,, r2, ~, and 72 given by equations 
(14) and (15) of the text. Accordingly, the first cumulant 
K1 is equal to q2L/~, and the normalized second 
cumulant given by (F. r~7~)- 1 is equal to AL/L. 

A renormalized treatment of the osmotic pressure 
Equation (32) is not given in ref. 39, but may be 

obtained from an expression given there for the free energy 
of mixing per unit volume AG as a function of the volume 
fraction ~b of the solute. In general, H is related to AG by: 

17 = ~2 0AG/~ (A.9) 

In ref. 39 AG is expressed as: 

AG = AGFn + AGxs (A. 10) 

for moderately concentrated solutions, where AGvn is the 
Flory-Huggins free energy of mixing, and AGxs accounts 
for contributions to AG from concentration fluctuations 
important at moderate concentration: 

Va AGFH_ ¢ ha ~b + (1 - 4>)In (1 - ¢) + Z¢(1 - ¢) + ( w -  ~)~3 
RT n 

(A.11) 

1,'1 AGxs 1 9 B e  
(A.12) 

RT 24n~ a 16n ~2~ 

Here, 1"1 is the molar volume of the solvent, B is equal 
to (½--Z)+ we, n = v2M/F , with v2 the polymer specific 
volume, ct is the ratio of the mean-square radius of 
gyration to the value at infinite dilution at the Flory theta 
temperature, and ~(NA/F1) 1/3 is a concentration- 
dependent correlation length;, the correlation length 
would be proportional to R 6 at infinite dilution. The 
theory provides an expression for ~ as an implicit function 
of B/¢ (for large n): 

B/q~=ct3[a(~)]2/{[gA(~)/16n] + (eta/6)} (A.13) 

where A(ct)= (ct 5 -  ~3)/4.216. In addition ~t2¢~ is given as 
an implicit function of B/e: 

Ct2¢~ = ot3A(ot)/(B/qb) (A. 14) 

With these relations, AGxs may be expressed in the form: 

Vx AGxs = ¢3[F(B/¢ )_  (B/b)] (A.15) 
RT 

where 

F(B/dP)= ~--~n ( ~ )  3[ct2f(B/cp)]3 + (B/dp)[1-f(B/dP)] 

(A.16) 

where f(B/dp)=9/16nct2dp~. (The term - B e  2 exactly 
cancels a like term in V, AGFn/RT.) Calculation of H 
gives: 

l"IV1 (~ (1__~)~2 OF(B/e) F2¢aF(B/(9)_A(¢) (A.17) 
RT n O(B/d?) 

where A(~b)=ln(1-¢)+~b+(th2/2)+(¢3/3)  is small for 
¢ of interest here. 

In the limit of small B/dp, F(B/¢) is given by: 

lim F(B/4))= (B/e)[1 - (5/16n)(6B/dp) '/2] (A.18) 
(B/C)  --, 0 

Consequently, for conditions with ~ = 1/2 (i.e. at the Flory 
theta temperature): 

lim F I V I _ ¢  ~-211-(5/1670(6w)*/Z]w(03-A(ck) (A.19) 
x=1/2 RT n 

w ~ O  

With the correspondence A3Mc 2 = 2wne~ 2 (valid for small 
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w and for A 2- -0 ) ,  this result leads to equation (32) of 
the text, with neglect of A(~). In the consideration of the 
limit with Z= 1/2 in ref. 39, it was assumed that w 
remained large, leading to a result for II given below. 
(In addition, certain coefficients were inadvertently 
omitted in some of the expressions presented in ref. 39.) 

We remark that in the limit of large B/J, F(B/dp) is 
given by: 

lim F(B/(a)=[1 + 27/12] 2 - --(16rc]z(9 × 4.216~3/4- 
n/~--.oo ~ \  9 , /  \ 16n ] 

x (B/c~) 3/4 ~ 6.08(B/q~) 3/4 (A.20) 

(The term 27/12 in the square brackets was omitted in 
ref. 39.) With this result: 

lim r I v l _ ~  ~-12.16[1 
B/,~-~oo R T  n 

31B2ZIB1/4~p9/4+A(qb ) 
16 

(A.21) 

For example, if w = 0, the factor in the square brackets 
reduces to 5/8, or if X= 1/2, that factor becomes unity, 
making the second term proportional to w3/4~b 3 for large 
w, by comparison with the result in equation (A.19) for 
small w. Finally, we note that F(B/ck) may be approxi- 
mated as (B/ok)l[1 + (B/~)x/4/6.08] within 4%, allowing 
an analytic estimate of H for intermediate B/c\ as a 
function of X, w and 4. 

Two-parameter smoothed-density models 
In general, for the two-parameter models, ~/2 and $3 

are each expected to approach limiting values for large 
z, and to reduce to zero for z =0. Various expressions 3s 
for V(Su)/kT have been used to compute A 2. For 
example, the well known Flory-Krigbaum potential 35 
given by: 

V(S~j)/kT = 33/2zct- s e x p ( -  3S2/4R 2) (A.22) 

with 0t = Ro/Ro, o has been used to compute Q(q) as well 
as A 2. The latter result gives35: 

A2M2/NA R3 ,~ (47t3/2/2.30) ln(1 + 2.30z~- 3) (A.23) 

Numerical results 36 for Q(q) calculated with equation 
(39) may be represented by: 

Q(q) ,~ exp{ - e[P-  t(q, 0 ) -  1]} ~ exp[ - e(qRo)2/3] 

(A.24a) 

for qRo < 3, with 

e = k~A2M2/NA Ra (A.24b) 

where k, ~ 0.005 (oscillations in Q(q) vitiate this expression 
for larger q). A similar relation for hard spheres (V= oo 
for S o < 2R and zero otherwise) gives Q(q) approximately 
represented by equation (A.24), with k~=0.028 for 
qR o < 1.3. 

The potential: 

V(Si~)/kT = - In[1 - Go 3 e x p ( -  0-2S2/R2)] 

= ~ [(Gaa)"/n] exp(-n0-2s2/g 2) (g.25a) 
n = l  

such that 

Gij = - GO- a e x p ( -  0-2S2/R2) (A.25b) 

with G and 0- functions of the interaction parameter z, 
has been used to compute both A 2 and A s (with AV=0),  
to give52: 

A2M2/NA Rs = (na/2/2)G (A.26) 

A3Ma/N2 R 6= (Tta/35/2)0-aG 3 = (8/7~3/235/2)0-3~/23 (A.27) 

Evaluation of Q(q) using equation (A.27) gives Q(q) in the 
form of equation (24) with: 

e = (3/40 "2) - 1 (A.28) 

Elimination of 0- in terms of the parameter k s gives 
equation (44) of the text, where k s is expected to be small 
(e.g. k s,~ 0.005 according to a treatment discussed above). 
Thus, for large z, such that ¢2 ~6.8, A3M/(A2M) 2 tends 
to the limit 0.41 if k s-- 0, in comparison with 5/8 for hard 
spheres TM. The limit 0.41 is close to the value 0.45 
deduced in part 2 for solutions of polystyrene in toluene 
or benzene. 
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